Răspuns :
Răspuns:
5+10+15+20+....205=
5·(1+2+3+4+...+41)=
5·[41·(41+1)]:2=
5·(41·42):2=4305
Răspuns:
4305
Explicație pas cu pas:
5+10+15+20+...+205 =
Dam factor comun pe 5
5(1+2+3+4+...+41)=
Calculam paranteza folosind formula:
[tex]\displaystyle \frac{n(n+1)}{2} \\ \\ \text{n=ultimul nr din sir. Se aplica doar la sir consecutiv}[/tex]
[tex]\displaystyle 1+2+3+...+41=\frac{41(41+1)}{2} \\ \\ \frac{41(41+1)}{2}=\frac{41 \cdot \not42}{\not2} \\ \\ \text{Am simplificat } \\ \\ 41\cdot21=861[/tex]
Asadar, avem un 5 si un 861 in paranteza.
5·861=4305
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau nevoie de ajutor, vă rugăm să ne contactați cu încredere. Așteptăm cu drag să reveniți și nu uitați să ne salvați în lista dumneavoastră de favorite!