Răspuns :
f'(x) = ((x^2-4)ln(x-1))' =
=(x^2-4)'ln(x-1) + (x^2-4)(ln(x-1))' =
= 2xln(x-1) + (x^2-4)(x-1)'/(x-1) =
= 2xln(x-1) + (x^2-4)/(x-1)
Mai departe se poate aduce la acelasi numitor.
Răspuns:
(x²-4)ln(x-1)= 2xln(x-1) +(x²-4)/(x-1)
Explicație pas cu pas:
functia si derivata au sens pt x>1
se aplica (fg)'=f'g+fg'
deci
(x²-4)ln(x-1)= 2xln(x-1) +(x²-4)/(x-1)
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau nevoie de ajutor, vă rugăm să ne contactați cu încredere. Așteptăm cu drag să reveniți și nu uitați să ne salvați în lista dumneavoastră de favorite!