SUBIECT III, Exercitiul 2 2. Fie expresia: 2 4x -6x-6 E(x) x+2 X- Teste evaluare nationala 2023 (2x) 8, xeR-(-2,-1,2}

Răspuns:
a) x^2-x-2=(x-2)(x+1)
b) E(x)=0 => E(x) nu depinde de x
Explicație pas cu pas:
Rezolvarea este în imagine .
Multă baftă!
a) [tex]x^{2} -x-2=x^{2} -2x+x-2=x(x-2)+(x-2)=(x-2)(x-1)=(x-1)(x-2)[/tex]
b)
[tex]E(x)=[\frac{2}{x+2}+\frac{4x}{4-x^{2} } +\frac{-6x-6}{x^{2} -x-2} ](2-x)-8[/tex]
[tex]E(x)=[\frac{2}{x+2}+\frac{4x}{(2-x)(2+x)}+\frac{-6(x+1)}{(x-2)(x+1}](2-x)-8[/tex]
[tex]E(x)=[\frac{2}{x+2}+\frac{4x}{-(x-2)(2+x)} -\frac{6}{x-2}](2-x)-8[/tex]
Numitor comun:
[tex]E(x)=[\frac{2(x-2)}{(x+2)(x-2)}-\frac{4x}{(x-2)(x+2)}-\frac{6(x+2)}{(x+2)(x-2)}](2-x)-8[/tex]
[tex]E(x)=(\frac{2x-4-4x-6x-12}{(x+2)(x-2)})(2-x)-8[/tex]
[tex]E(x)=( \frac{-8x-16}{-(x+2)(2-x)} )(2-x)-8[/tex]
[tex]E(x)=\frac{8(x+2)}{(x+2}-8[/tex]
[tex]E(x)=8-8[/tex]
[tex]E(x)=0[/tex]
Deci, E(x) nu depinde de x.