👤

Suma dintre câtul și restul unei împărțiri a două numere naturale este 53 iar restul depășește cu unul triplul câtului determinați deîmpărțitul știind că este un număr natural cuprins între 740 și 750.
Vă rog repede!
Dau 80 puncte, coroniță ,inima !
Cat mai explicat!​


Răspuns :

Răspuns:

Vom nota:

a împărțitul,

b împărțitorul,

q câtul,

r restul.

Conform enunțului avem:

+

=

53

q+r=53

=

3

+

1

r=3q+1

740

750

740≤a≤750

Rezolvăm sistemul de ecuații:

Prima ecuație ne spune că suma câtului și restului este 53. A doua ecuație indică că restul depășește cu unul triplul câtului.

Substituim în ecuația 1 cu expresia din ecuația 2:

+

(

3

+

1

)

=

53

q+(3q+1)=53

Simplificăm:

4

+

1

=

53

4q+1=53

4

=

52

4q=52

=

13

q=13

Acum, găsim restul:

=

3

×

13

+

1

=

40

r=3×13+1=40

Astfel, împărțitul este:

=

+

=

×

13

+

40

a=bq+r=b×13+40

Din condiția 3, avem că

740

750

740≤a≤750, deci:

740

×

13

+

40

750

740≤b×13+40≤750

700

×

13

710

700≤b×13≤710

53

54

53≤b≤54

Prin urmare,

b poate fi 53 sau 54. Deoarece

=

13

q=13, împărțitul

a poate fi:

=

53

×

13

+

40

=

699

a=53×13+40=699

sau

=

54

×

13

+

40

=

713

a=54×13+40=713

Așadar, împărțitul este fie 699, fie 713.

Răspuns:

Suma dintre catul și restul este 740 și 750

Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări suplimentare sau nevoie de ajutor, vă rugăm să ne contactați cu încredere. Așteptăm cu drag să reveniți și nu uitați să ne salvați în lista dumneavoastră de favorite!


En Studentsy: Alte intrebari